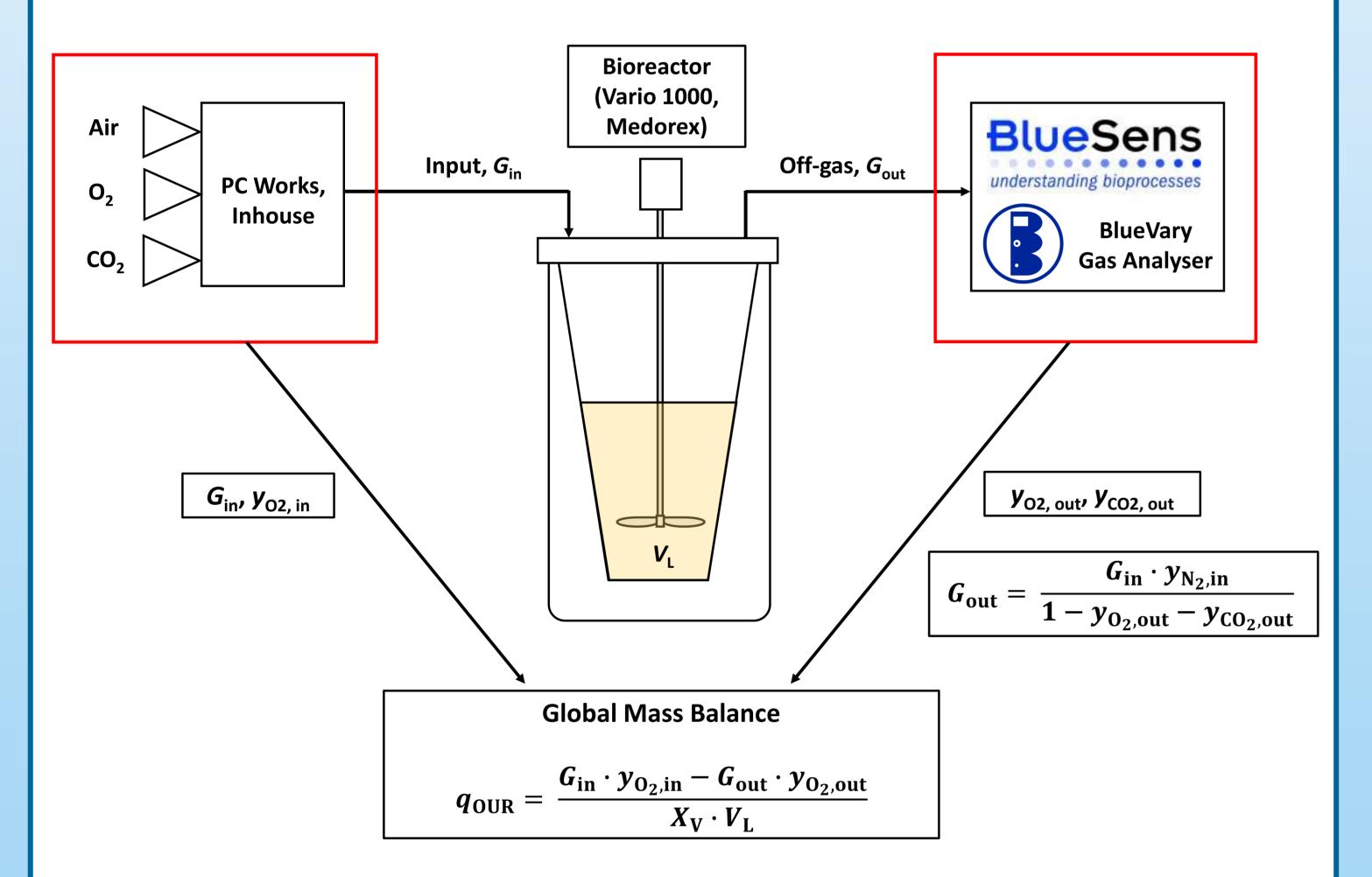


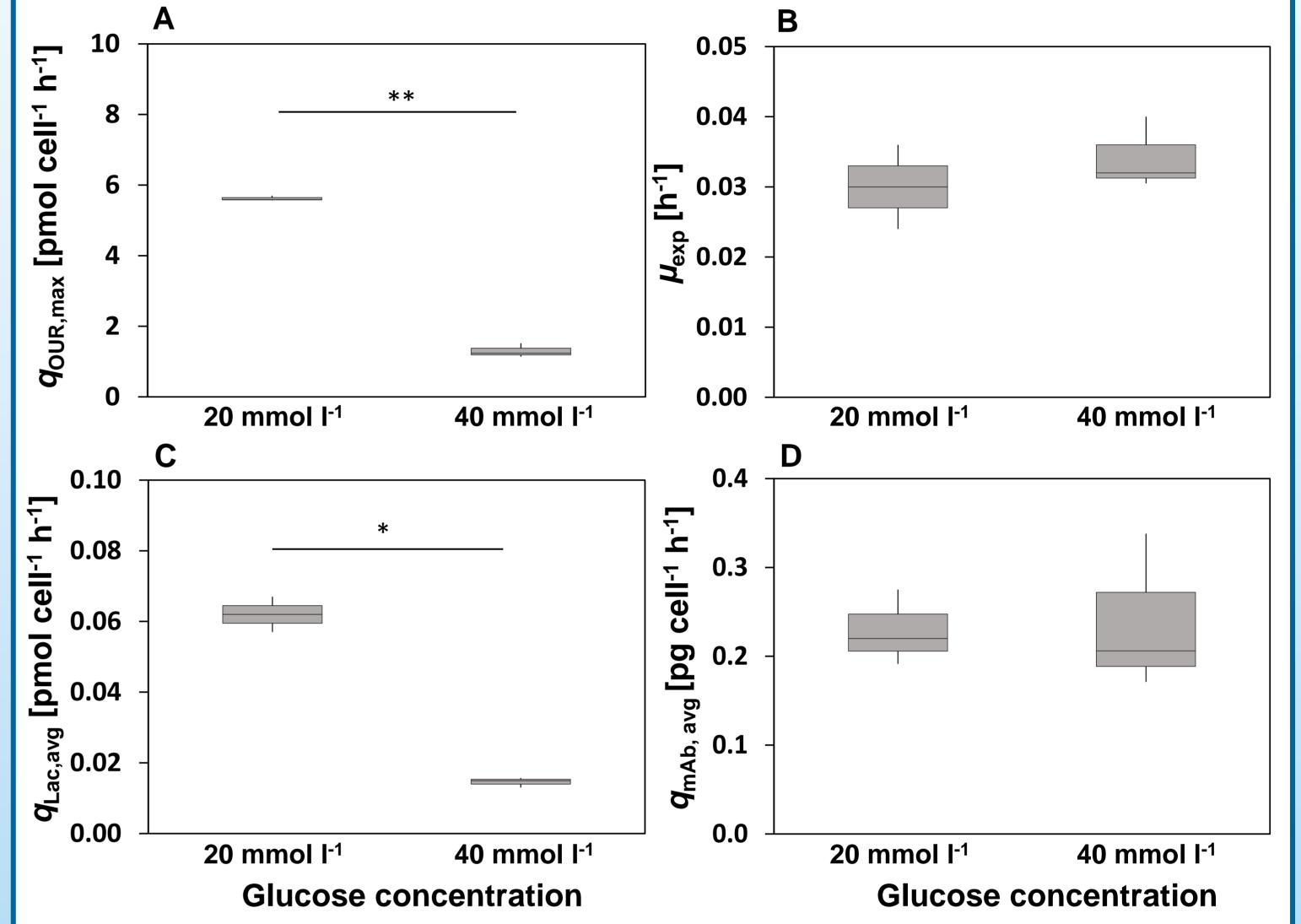
Impact of initial glucose concentration on oxygen uptake rate in cell culture processes

Johannes Möller^{1,2,a}, Fabian Freiberger¹, Krathika Bhat¹, Eda Ateş¹, Kristina Bruellhoff ^{3,b}, Holger Müller³, Ralf Pörtner^{1,2}

Objective

In this work, the impact of the initial glucose concentration on cellular metabolic activity was investigated using the specific oxygen uptake rate (q_{OUR}) and specific lactate uptake rate (q_{Lac}) as indicators. To calculate q_{OUR} , reliable off-gas measurements are obtained using BlueSens off-gas analyser.


Results and Discussion


The impact of two different initial glucose concentrations on the cell metabolic activity was investigated using off-gas measurements for q_{OUR} quantification. Additionally, specific growth rate during exponential phase (μ_{exp}), specific lactate uptake rate (q_{Lac}) and specific antibody productivity (q_{mAb}) were compared.

Measurement principle for q_{OUR}

A global mass balance was applied to calculate q_{OUR} using the oxygen fractions (y_{O2}) in the incoming and outgoing gas streams. Using the BlueVary (BlueSens) variable off-gas analyser, the composition of the off-gas from the cell culture bioreactor was quantified. The workflow and basic calculations are shown in Figure 1.

Figure 1: Workflow for calculating q_{OUR} using gas analyser

<i>Y</i> _{O2}	Volume fra	action of	oxygen	in a g	gas stream
J 02					

- *G* Volumetric gas flow rate
- X_{V} Viable cell density
- *V*_L Liquid working volume in the bioreactor

Figure 2: Comparison of specific rates for CHO batch cultivations with 20 mmol I⁻¹ and 40 mmol I⁻¹ initial glucose concentrations, A: Maximal specific oxygen uptake rate B: Specific growth rate (0 - 72 h), C: Specific lactate uptake rate during lactate consumption (averaged, t > 90 h) D: Specific productivity (averaged for all measurements), Working volume: 200 ml, Temperature: 37°C, Agitation: 400 – 800 rpm. Two-tailed independent sample *t*-test : * = significant difference (*p* < 0.05), ** = highly significant difference (*p* < 0.001)

Fig. 2A shows that the culture with 20 mmol l⁻¹ initial glucose culture has a four-fold higher $q_{OUR,max} = 5.6$ pmol cell⁻¹ h⁻¹, indicating a higher metabolic activity. This is not apparent from the similar growth rates (Fig. 2B) but can be inferred only through off-gas measurements and q_{OUR} calculations. The cells grown with 20 mmol l⁻¹ initial glucose also take up lactate more actively (Fig. 2C, $q_{Lac,avg} = 0.06$ pmol cell⁻¹ h⁻¹), which can help reduce the deleterious effects of high lactate levels [1]. Fig. 2D shows an average $q_{mAb,avg} = 0.23$ pg cell⁻¹ h⁻¹ for both the initial glucose concentrations, which is also comparable to previous results [2, 3], thereby indicating no adverse effects of reduced initial glucose.

Cultivation Methods

Batch cultivations with two different initial glucose concentrations,

20 mmol I^{-1} (n = 3) and 40 mmol I^{-1} (n = 3), were performed using CHO cells. At the beginning of the cultivation, only headspace aeration with air was performed until the dissolved oxygen dropped to 40 %. Then, pure oxygen was supplied through a ring sparger in conjunction with headspace aeration to maintain the dissolved oxygen level

at 40 ± 1 %. The q_{OUR} was calculated as explained above.

The impact of the initial glucose concentration on cell metabolic activity

was identified using BlueSens off-gas analyser.

- Simplified off-gas analytics supports knowledge-based process development
- Higher $q_{OUR,max}$ observed for lower initial glucose concentrations

Cells take up lactate more actively for lower initial glucose concentrations

Contact

- ^ajohannes.moeller@tuhh.de, ^bkristina.bruellhoff@bluesens.de
- ¹Hamburg University of Technology, Institute of Bioprocess- and Biosystems Engineering Germany, Hamburg, Germany
- ²Cell Service Center, Hamburg University of Technology
- ³BlueSens gas sensor GmbH, Herten, Germany

References

[1] Hartley et al. (2018) DOI: 10.1002/bit.26603
[2] Möller et al. (2019) DOI: 10.1007/s00449-019-02089-7
[3] Möller et al. (2020) DOI: 10.1016/j.compchemeng.2019.106693

Acknowledgement

We kindly acknowledge funding by the German Federal Ministry of Education and Research (BMBF): FKZ: 031B0577A-C.

