
 

A Real-time Adaptive Oxygen Transfer  
Rate Estimator for Metabolism Tracking  
in Escherichia coli cultures
Introduction 
Oxygen and carbon dioxide off-gas measurement 

enables the application of advanced estimation and 

control methods for aerobic bioprocesses. BlueSens, 

GmbH (Herten, Germany) offers an exhaust gas sensor 

capable of measuring mole ratios of both oxygen and 

carbon dioxide with accuracy comparable to mass 

spectrometry, the benchmark standard, but at a 

fraction of the cost [1]. The reduced cost makes it 

feasible to dedicate a sensor to each bioreactor to 

enable more sophisticated real-time estimation and 

control of bioprocesses. Direct computation of the 

oxygen transfer rate (OTR) from any type of off-gas 

measurement is problematic for use in control, since 

transport dynamics and sensor dynamics cause the 

computed OTR to be an attenuated and delayed 

version of the true OTR signal. The primary objective of 

this report is to describe a state estimator that 

combines exhaust gas, stir speed, and dissolved 

oxygen measurements to predict the true OTR in real 

time without attenuation or delay. The predicted OTR 

can be used for a variety of controls and estimation 

purposes, such as determining when the culture is in 

oxidative or overflow metabolism. 

Figure 1 – Oxygen concentration in a stirred-tank 

bioreactor, the input gas concentration is b0, the 

concentration exiting the liquid, b1, the concentration of the 

head-space b2, and b3 the concentration reported by 

the sensor. 

 

Background: OTR Dynamics 

In a stirred-tank bioreactor, the input gas passes 

through two stages before being measured by the 

exhaust gas sensor. Figure 1 shows a bioreactor and 

attached off-gas sensor. The input gas contains a 

known concentration of oxygen, b0. The gas enters 
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from the bottom of the vessel and a rotating impeller 

breaks up the bubbles, facilitating the absorption of 

oxygen into the culture. The difference in oxygen 

concentration between the entering gas, b0, and the 

exiting gas, b1, represents the amount of oxygen 

transferred into the liquid V1. Assuming the mass 

inflow is equal to the outflow, this difference can be 

used to calculate the OTR in the liquid,  

 

(1) 

 

where Mf is the mass flow, �04 is the density of oxygen 

at 25ºC, and V1 is the volume of the liquid. OTR can 

also be modeled using the stir speed and dissolved 

oxygen concentration, 

 

(2) 

 

where kLa is the oxygen transfer coefficient, C* is the 

maximum oxygen carrying capacity of the liquid, C is 

the current dissolved oxygen concentration, and N is 

stir speed. The dependence of kLa on stir speed N is 

modeled as linear about stir speed N0.  

The gas leaving V1 mixes with the gas in the 

headspace volume V2, resulting in the oxygen 

concentration b1. This process is a standard mixing 

model, 

 

, (3) 

 
where Mf is the mass flow rate. The concentration b2 is 
sampled by the BlueInOne sensor, and the sensor 
output, b3, is modeled as a first order linear system 
with time constant 𝜏2, 

 

  . (4) 

 

Clearly, computing OTR directly from the concentration 

b3 would be significantly different from the true value 

of OTR computed from concentration b1.  

 

Estimator Design 

A state estimator predicts the unmeasurable state 

variables of a system by using the measureable 

outputs and inputs in combination with the known 

dynamics of the system. When an adaptive state 

observer is used, the system dynamics are known 

except for some unknown or time-varying parameters. 

In the bioreactor system presented in the previous 

section, the oxygen concentration dynamics are 

represented by the state variables b2 and b3, which 

follow the dynamics given by Eqns (3) and (4). The 

input to the system is concentration b1, which cannot 

be measured directly, but can be computed from stir 

speed using Eqns (1) and (2), 

 

. ( 5 ) 

 

All parameters in the model may be reliably 

characterized in advance, with the exception of the 

parameters a0 and a1 which relate stir speed to kLa. 

These parameters are notoriously hard to find and 

tend to vary slowly over the length of the culture [2,4]. 

The estimator described in this report uses an 

adaptive law based on measurements from the 

BlueSens sensor to identify the possibly-time-varying 

parameters a0 and a1 in real time. With good estimates 

of these parameters, OTR can be accurately predicted 

from stir speed and dissolved oxygen concentration 

using Eqn (2).   

 

Estimator Mathematics 

The adaptive estimator is based on a structure from 

[6]. The mathematics for the estimator will be briefly 

summarized. The estimator is based on the sensor and 

transport dynamics, Eqns (3) to (5), rewritten as a 

state space model in observable canonical form, 
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The adaptive estimator simultaneously estimates the 

state variables b2 and b3 and the parameters a0 and 

a1. The estimator is driven by known variables b3, C, N, 

V1, and V2. The adaptive estimator is given by 
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where  

v0 and v1 are auxiliary variables. The 

adaptive law for the two unknown 

parameters are designed as  

where g0 and g1 are observer gains. Other variables 

are designed as 

 

 

Note that the argument s denotes the differential 

operator d/dt . 

Table 1 contains all the parameters for the oxygen 

dynamics model. kLa is known to slowly change over 

the course of a fermentation and is influenced by 

multiple factors such as anti-foam addition and liquid 

viscosity changes; therefore, the values for the linear 

model seen in Eqn. (2) are time-varying and can only 

be defined approximately. 

Table 1: Adaptive Estimator Parameters 

 

Experiments 
Bioreactor System  

The bioreactor system is a Sartorius Biostat B 5-L 

glass vessel and digital control unit (DCU). The DCU 

connects to probes for pH (Hamilton Company, Reno, 

NV), temperature (Sartorius AG), and dissolved oxygen 

(Hamilton). The data is sampled every 15 seconds 

using the OPC protocol in a Simulink model running on 

Matlab 2012a (Mathworks Inc. Natick, MA). The model 

also samples the relative humidity, temperature, 

pressure, and oxygen and carbon dioxide volumetric 

percentages coming from the BlueSens BlueInOne 

exhaust gas analyzer every 10 seconds. The mass flow 

of the sparged gas is measured with a mass flow 

controller (Omega Engineering Inc, Stamford, CT) and 

sampled every 5 seconds. Lastly, two balances (Ohaus 

Corp, Parsippany, NJ) keep track of the amount of 

glucose and base dispensed and report weight every 5 

seconds. 

 

  
Parameter Name Value 

  Mass Flow rate 3 L/min 

  Culture volume 1.67 L 

  Headspace volume 5.03 L 

  BlueSens time constant 55 s 

 Oxygen density 1.331 g/L 

  Initial value 0.0035 1/s 

  Initial value 0.00022  
1/(s RPM) 

  Input Oxygen Volume 20.9 7% 

  Maximum Oxygen carrying 
capacity 6.71 mg/L 

  Initial Stir speed 200 RPM 



 

Figure 2 – The Biostat-B bioreactor system, shown with 

5 L vessel and motor, DCU, BlueSens BlueInOne 

sensor, and Balances. 

 

Sensor Characterization 
In order to implement the adaptive OTR estimator on 

the system, the behavior of the BlueInOne sensor was 

analyzed in several characterization experiments.  

The first experiment was a study of the delay and 

response time of the sensor, t4, Previous publications 

have numbers for response time and measurement 

delay, but for a different model and at a much smaller 

flow rate (0.040 vs. 2 L/min (lpm)). The input gas, bo, 

was connected directly to the input of the BlueInOne 

sensor, bypassing the stirred-tank vessel; this allowed 

for measurement of only the sensor dynamics. In this 

experiment, the composition and flow of the input gas 

was varied. The input gas was switched from nitrogen 

to air in 5 minute increments. The gas would cycle 

twice, and then the flow rate would increase by 1 lpm, 

from 2 to 8 lpm. The delay (15 seconds) represents 

the time it took the sensor to respond once the gas 

composition had changed. The response time (55 

seconds) is the time constant for the sensor, i.e., the 

time for the sensor to reach 63% of its final value. The 

data showed that the response time did not change 

with increasing gas flow, indicating the measuring 

chamber in the BlueInOne was being flushed well 

above maximum requirements. 

The second experiment explored the accuracy and 

stability of the sensor measurements to changes in 

pressure, ranging from 1.02 to 1.67 bar. This 

experiment determined the usability of the sensor in 

experiments requiring pressurizing of the headspace. 

The Biostat-B vessel has a maximum pressure limit of 

1.63 bar. The manufacturer’s certified, accurate 

operational pressure range for the BlueInOne sensor is 

between 0.8 and 1.3 bar, with a maximum of 2 bar. 

The experiment began by performing a one-point 

calibration on the BlueInOne; the input gas of air had 

a constant assumed oxygen volume of 20.97%. As in 

the previous experiment, the input gas was connected 

directly to the input port of the BlueInOne sensor. The 

mass flow rate was varied between 1 and 9 lpm in 

steps of 1 lpm. The steps in mass flow caused the 

internal pressure of the sensor to rise from 1 to 1.67 

bar (Table 2). 

Table 2: Measurement Stability Tests 

Figure 3 – Measurement Stability Results, the pressure 

compensation algorithm in the BlueInOne quickly 

  
Mass 
Flow 
(lpm) 

Pressure 
(bar) 

Pressure 
Step (bar) 

O2  
Volume 
(%) 

O2 
Spike   
(%) 

O2 Spike 
Duration 
(s)

1 1.02  20.97 
2 1.06 0.045 20.97 1.35 35 
3 1.12 0.055 20.97 1.85 45 
4 1.18 0.064 20.96 2.41 75 
5 1.27 0.081 20.97 3.17 55 
6 1.35 0.085 20.98 3.53 85 
7 1.45 0.095 21.01 3.78 55 
8 1.56 0.105 21.04 3.57 75 
9 1.67 0.110 21.10 3.49 85 



 

corrected any error caused by the step changes in 

pressure. The final corrected value changed by less 

than 1% over the tested pressure range.  

 

After each step of the flow rate and pressure, the 

reading would spike due to the increased amount of 

oxygen in the chamber. The compensation software 

acted quickly to correct the reported measurement, 

and on average only 64 (±19) seconds of data was 

affected. The reported oxygen volume drifted from 

20.97% to 21.1% over this range of pressure, 

representing <1% error. As expected, the base reading 

began to drift above 1.3 bar. The pressure 

compensation software produced accurate 

measurements even outside its certified range, 

indicating the sensor should yield accurate stable 

readings under conditions of constant or slowly 

varying pressure. 

 

Bioreactor Conditions 

Two experiments were performed to test the accuracy 

of the OTR estimator. In the first experiment, the OTR 

estimator was implemented on a bioreactor simulator. 

The delays on input and output data characteristics 

mirror that of the Sartorius Biostat-B, the BlueInOne 

sensor, and the two balances. The simulated behavior 

of the Escherichia coli (E. coli) is based on the work of 

1999 Xu [8]. In the second experiment, E. coli 

MG1655 pTV1GFP [5] was cultured for 12 hours in 

minimal media. The bioreactor was inoculated at an 

optical density (measured by spectrophotometer) of 

0.5 OD. In both experiments, the growth rate was kept 

at 0.25 h-1. The volume of the culture was 1.67 L. The 

mass flow of the input gas was 3 liters per minutes.  

 

Validation of the OTR Estimator 
A feed rate disturbance in the form of a pulse was 

used to test the capability of the OTR estimator to 

track E. coli metabolism. The pulse increased the feed 

rate to four times the current feed rate. This pulse was 

designed to increase the glucose concentration such 

that the E. coli enter overflow metabolism. While 

overflow metabolism is not desirable for E. coli, the 

feed rate pulse is short and any negative byproduct is 

quickly consumed. Tracking the E. coli metabolism 

transition from oxidative to overflow will help 

determine a feed rate to keep the culture on the verge 

of overflow, maximizing oxidative metabolism. 

In Figure 4, the experimental results (A, B) show the 

OTR and OUR rise sharply as the E. coli metabolism 

increased in response to the glucose pulse. This 

behavior duplicates the behavior seen in simulation, 

Figure 4 D and E, indicating that experimental results 

are reasonable. Notice the response of the OTR formed 

from the BlueInOne measurements, OTRsens. The 

filtering effects are seen in the attenuation of the 

maximum height of OTRsens versus the OTRest and the 

delay between both their respective peaks.  

The response of the OTRest is almost immediate while 

the peak in OTRsens does not occur until after the 5 

minute pulse is over. The plateau effect seen in 

OTRest indicates that the culture entered overflow 

metabolism. In overflow metabolism, the oxidative 

metabolism becomes saturated with glucose and any 

excess glucose absorbed by the cells is anaerobically 

converted to acetate, which can inhibit growth at high 

concentrations (2 g/L). The profile of OTRest indicates 

that the oxidative metabolism could process glucose 

at a higher rate, thus the feed rate could be increased 

significantly. A much longer pulse would be required 

to obtain the same data from OTRsens, resulting in 

significantly more acetate production. 

The behavior of the E. coli in actual and simulated 

experiments was very similar, validating the tuning of 

the OTR estimator gains (Figure 4 A, B, D, and E). In 

the simulated experiments (Figure 4 D, E), the OTRest 

tracks the actual OTR very well. This indicates that the 

estimate of the kLa parameters a0 and a1 converged to 

their true values. The kLa for the actual fermentation 

was plotted in Figure 5. The distribution of the data 

points indicates the kLa varied linearly with stir speed, 

validating our linear model. A linear model is 

appropriate since the short culture length did not 

allow the cell density to affect the viscosity of the 

media. 



 

Figure 4 – Glucose Pulse Experiments, a pulse (C) in 

the feed rate was implemented to test tracking of the 

OTR estimator on actual (A, B) and simulated (D, E) 

bioreactor systems. In A, the OTR estimator was able 

to accurately track the OTR and provided a better 

indication of E. coli metabolism than the OTR using 

the BlueInOne measurements. The attenuation and 

delay effects of the system are clearly seen (A, B).  

 

 

 

 

 

 

 

Figure 5 – Experimental Oxygen Transfer Coefficient, 

the estimates for the kLa calculated by the OTR 

estimator. The kLa and stir speed maintained an 

approximately linear relationship during the 12 hour 

fermentation. This result validates the kLa model. 

 

Conclusions 
The OTR estimator provided a more accurate OTR 

profile by removing the influences of the headspace 

and sensor dynamics on the exhaust gas oxygen 

volume measurement. The BlueInOne measurements 

provided both accurate and stable measurements, 

allowing the adaptive algorithm to estimate both the 

unknown kLa and OTR values. The OTR estimator 

accurately tracked the E. coli metabolism and will be 

an integral part in the development of maximizing 

controllers for oxidative metabolism and improving 

biomass yield. 

Researchers have been using exhaust gas sensors to 

develop advanced estimator and control algorithms for 

over 20 years. The implementation of these advanced 

estimator and control algorithms in an industrial 

context has been very slow, much to the detriment of 

the industry [7]. Ranging from neural networks to 

model predictive control, the BlueInOne sensor 

enables academic and industrial researchers to 

explore and implement the next level of bioprocess 

control techniques.  
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